On the number of Gaussian components in a mixture: an application to speaker verification tasks

نویسندگان

  • Mijail Arcienega
  • Andrzej Drygajlo
چکیده

Despite all advances in the speaker recognition domain, Gaussian Mixture Models (GMM) remain the state-of-the-art modeling technique in speaker recognition systems. The key idea is to approximate the probability density function ( ) of the feature vectors associated to a speaker with a weighted sum of Gaussian densities. Although the extremely efficient Expectation-Maximization (EM) algorithm can be used for estimating the parameters associated with this Gaussian mixture, there is no explicit method for predicting the best number of Gaussian components in the mixture (also called order of the model). This paper presents an attempt for determining the “optimal” number of components for a given feature database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

A Gaussian Selection Method for Speaker Verification with Short Utterances

Speaker recognition systems frequently use GMM-MAP method for modeling speakers. This method represents the speaker using a Gaussian mixture. However, in this mixture not all Gaussian components are truly representative of the speaker. In order to remove the model redundancy, this work proposes a Gaussian selection method to achieve a new GMM model only with the more representative Gaussian com...

متن کامل

Gaussian selection applied to text-independent speaker verification

Fast speaker verification systems can be realised by reducing the computation associated with searching of mixture components within the statistical model such as a Gaussian mixture model, GMM. Several improvements regarding computational efficiency have already been proposed for speaker verification. In this paper, the technique of Gaussian selection is applied to the speaker verification task...

متن کامل

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

The Robustness of GMM-SVM in Real World Applied to Speaker Verification

Gaussian mixture models (GMMs) have proven extremely successful for textindependent speaker verification. The standard training method for GMM models is to use MAP adaptation of the means of the mixture components based on speech from a target speaker. In this work we look into the various models (GMM-UBM and GMM-SVM) and their application to speaker verification. In this paper, features vector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003